Friday 21 September 2012


Biodiversity and ecosystem services: Complementary approaches for ecosystem management?
Schneiders et al. (2012)

According to the Millenium Ecosystem Assessment (MA, 2003), ecosystem services (ES) are the benefits humans obtain from ecological systems. They can be classified as providing services, such as food; regulating services, like control of diseases; cultural services, as recreational; and supporting services, such as nutrient cycling. Many surveys are currently being conducted on ES, particularly addressing their economic valuation. These studies are contributing to the evaluation of strategies for alternative uses of land and, most importantly, may aid in demonstrating and justifying the urge for conserving biological diversity (Schneiders et al., 2012).

Furthermore, many researchers have stated that the quality and sustainability of ES could be directly influenced by, or strongly correlated with, the level of biodiversity of an ecosystem (MA, 2003, Cardinale et al., 2012, Schneiders et al., 2012). However, for many ES, the evidence for the effects that biodiversity has on them is mixed or insufficient. In addition, how biodiversity per se contributes to the ES is even less well defined (Cardinale et al., 2012).

This week’s paper aimed to resolve the much-discussed question ´Are biodiversity conservation, with the aim of preserving biodiversity, and ES, with the goal of sustaining human well-being, mutually beneficial or are trade-offs always inevitable?´. In order to address this aim, the authors:

  • Analyzed the relations between biodiversity, ES and land use intensity for the region of Flanders through a comparison of their estimated values (generated by expert opinion) in grid maps (4km x 4 km). The researchers found a negative relationship between biodiversity and ES values and land use intensity values. 
  • Described the relationships between biodiversity and land use intensity, for the long term future. Here, the authors discussed the importance of establishing a ´safe minimum standard of conservation´ (SMS) that is the ´lowest´ biodiversity level accepted by society. This SMS will help evaluating whether an ecosystem is healthy or not and if the use of ES are being sustainable.
  • Applied ecosystem management in order to relate the current and the future target scheme. The researchers recommended different approaches of EM according to the characteristics of the areas: for zones with high levels of biodiversity, they recommended a biodiversity based approach; for zones with multifunctional uses and a good state as a future perspective, an ecosystem service approach was suggested; and for built-up zones and areas with intensive agricultural used, their advice was a technological service based approach. The authors suggested that by using this division of ecosystem management the joint achievement of biodiversity and ES goals would be easier. 


The discussion started with the statement that considering the main objective of ES is human well-being, conservation focusing on ES would focus mainly on species that make those kinds of services possible. Then, the group recognized the risk of this type of conservation for we only know few species and even less about their functions and the ES they are involved with. Therefore, it was stated that conservation efforts should focus on preserving as much as possible (the precautionary principle), except in those ecosystems where a specific ES is needed. 

Later, the discussion moved into ES being a buzzword. In the past, it helped to gather people from different disciplines together to talk about conserving biodiversity. Sadly, now ES is mainly being used as a tool for valuing how much money society can get from nature. The group recognized that the lack of environmental education and an emotional connection with nature would have predisposed societies to having an ‘I-only-care-about-having-money’ attitude. This lack of attachment to nature could be one of the causes that makes new generations insensitive to what happens around them and in their environment because they only care about getting the maximum profit from it. 

As for the paper itself, the group claimed that even though the findings obtained by the papers were not novel and they did not actually measure ES nor present any solution, the method of grid maps used was a good contribution for a spatial analysis and could be helpful in determining what type of management is appropriate according to the features of an area. The group also questioned the used of ´experts opinion´ in establishing the values for land use type (Appendix A of the paper).

Questions:

  1. How can ecologists help current and future generations consider the importance of biodiversity and actually care about nature? A member of the group proposed including some ecology courses in the curricula. Will this be enough to change students´mentality?  
  2. Considering that we cannot conserve all species, should conservation programs focus on species that provide ES? Will this actually help the conservation of the ecosystem and its functions? What about the other species?


 References:

  1. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. doi:10.1038/nature11148
  2. MA. (2003). Millenium Ecosystem Assessment: Ecosystems and human well-being - a framework for assessment. Washington, U.S.A.: Island Press.
  3. Schneiders, A., van Daele, T., van Landuyt, W., & van Reeth, W. (2012). Biodiversity and ecosystem services: complementary approaches for ecosystem management?. Ecological Indicators, 21(SI), 123-133. doi:10.1016/j.ecolind.2011.06.021


2 comments:

  1. I think that one way ecologists can help the understanding and use of these kinds of studies is to come up with sensible, quantitative ways of comparing landscapes that are easy to communicate to people in other fields (this is not easy to do!). For instance, in this paper, the authors talk about the 'safe minimum standard', but such a value is hard to measure because it depends on many variables. Ecologists need to work on how we can measure such values and make them meaningful.

    ReplyDelete
  2. As a conservationist I do not believe we can use ES to determine what species we should conserve. Species that are critically endangered may have such low numbers that the ES they may once have served is no longer functional. An example that comes to mind is the Kakapo.
    On which criteria do we decide if an animal or plant is preforming an ES? Is it only when there is an obvious or monetary benefit to humans? The paper itself states that the species fulfilling most of ES are those that are common and resilient to change. Ridder (2008) states that using
    ES as justification for protecting biodiversity leaves conservations vulnerable to observations that may suggest otherwise. ES could be more efficiently provided by artificial means or other species may be encouraged at the expense of natural communities. Values other than ES should not be overlooked when making decisions concerning conservation of species.

    Ridder, B. (2008). Questioning the ecosystem services arguments for biodiversity conservation. Biodiversity and Conservation, 17(781-790).

    ReplyDelete